

	Kepware Technologies
	Kepware Technologies
Phone 207 775 1660
400 Congress St.
Toll Free 888 KEPWARE
3rd Floor
Fax 207 775 1799
Portland, ME 04101
www.kepware.com

U-CON Profile Development
Host Protocol for Process Sensors MCT 300 Near-infrared Photometric Analyzer
U-CON Profile Development

Process Sensors MCT 300 Near-infrared Photometric Analyzer
Overview
The purpose of this project is to provide an interface to Process Sensors MCT 300 Near-infrared Photometric Analyzer for the monitoring and collection of data.
Communications
Communications Parameters
This device uses an RS-232 or RS-485 interface with a unique Device ID. The comm. parameters are 8 data bits, no parity, and 1 stop bit with a variable baud rate. The protocol is ASCII.
Communications Data Speed

If the communications speed is set to 9600 Baud then it will take approximately 1 msec to transfer each byte across the wire. In this protocol a typical tag request might be 11 bytes and the data (whether written to the device or read from it) might be 9 bytes. That is a total typical wire time of about 20 msec. Both the tag requests and the data are variable-length, so the total time for a request and response will vary. This estimate does not include the amount of time the device takes to respond to the request.
Communications Procedures
The communications is a simple request/reply system. The host computer sends a request and the device sends a reply. There is no handshaking or checksumming involved.

All processing in this protocol is Solicited.
Packet Configuration
The following section will describe how the tag requests are configured and what the responses are.
General Request Structure
All characters in the protocol are ASCII. The only characters used are the printable characters and the carriage return (CR or hexadecimal 0x0D).

Each request from the host starts with a # character followed by the Device ID. The Device ID is a character in one of the following ranges:
	Range of ASCII representations
	Range of values to put into U-CON Device Properties

	‘1’–‘9’
	49–57

	‘A’–‘Z’
	65–90

	‘a’–‘z’
	97–122

There is a total of 61 possible ID’s. The device ID is entered into the device profile as the raw ASCII encoded value of the character. For instance, a device ID of ‘A’ would be entered into the U-CON Device Properties as the decimal number 65.
After the Device ID, the host sends the name of the tag.

After that is a ? character if the request is a read, or an = character if the request is a write. There are a few read-only or write-only tags for which neither a ? nor a = is sent.
Then, if the tag is part of a group, there are one or two integers (subscripts) specifying which tag in the group is being accessed. If two subscripts are necessary, they are separated by a space character.

For write requests, the host then sends a space character (omitted in a few commands), followed by the data to be written.

Finally, the host sends a CR.

General Response Structure

After a read request, the device sends the requested data, followed by a CR.

After a write request, the device sends an asterisk (*), followed by a CR.

Error Codes

If the device detects an error in the request, it sends a ? character, followed by a numeric error code, followed by a CR. The device may return the following error codes:

1 – Command error. The tag name was not recognized, or a blank command (just a CR) was sent.

2 – Command format error. The arguments to the tag name were not recognized.
Example Request/Response Transactions
In these examples, a Device ID of ‘5’ is used. All characters are shown in their printable ASCII representation; the CR is shown as <CR> and the space is shown as <SP>.

Example Tag Read
PC Request to Device
	Start Character
	Device ID
	Tag Name
	“Read” Code
	Tag Subscript
	Delimiter
	Tag Subscript
	End Character

	#
	5
	SPAN
	?
	10
	<SP>
	2
	<CR>

Device Good Packet Response to the PC
The device will respond with the data value that was requested if there is not a problem with that transaction.
	Tag Value
	End Character

	123.456
	<CR>

Device Bad Packet Response to the PC
The device will send an error message if the command is bad.
	Error Identifier
	Error Code
	End Character

	?
	1
	<CR>

At this point the receiving PC can resend the request or move on.

Example Tag Write

PC Request to Device
	Start Character
	Device ID
	Tag Name
	“Read” Code
	Tag Subscript
	Delimiter
	Tag Subscript
	Delimiter
	Tag Value
	End Character

	#
	5
	SPAN
	=
	10
	<SP>
	2
	<SP>
	121.411
	<CR>

Device Good Packet Response to the PC

The device will send an asterisk and <CR> if there is not a problem with that transaction.

	Acknowledge Character
	End Character

	*
	<CR>

Device Bad Packet Response to the PC

The device will send an error message if the command is bad.
	Error Identifier
	Error Code
	End Character

	?
	1
	<CR>

At this point the receiving PC can resend the request or move on.
The Profile

Profile Design

The following is an explanation of the profile design. The design takes into account the need to read tags, the need to write tags, and the need to check for error codes from the device.
Channel and Device Configuration
We will create a new project that will have only one instance of the MCT 300 device profile in it. The device profile in the project can be renamed and copied. The Device ID may be changed to match existing devices as well.
Transaction Design

The device profile will contain a number of tags and tag groups. In addition, there are some tag blocks, for the cases in which the device responds with more than one tag value in one response. First the individual tags and the tag groups will be described, then the tag blocks will be described.

Individual Tags and Tag Groups
The columns in the table (below) of tags and tag groups have these meanings:

Tag or group name: The tag name that can be accessed by an OPC client. For tag groups, this is the base name of the group; tags within the group are accessed by subscripts delimited by the dot (.) character.
Access: One of the following access types:

· R/W – readable and writable

· R – read only

· W – write only

Sub1 and Sub2: For tag groups only. These columns indicate the subscripts necessary to access the group. The following abbreviations are used:

· cal – This subscript must be referred to by OPC clients as “cal” followed by an integer from 01 to 50 which indicates the product calibration code. Calibration codes from 01 to 09 must be written with the leading zero.
· con – This subscript must be referred to as “con” followed by an integer from 0 to 2 which indicates the constituent. These subscript numbers are written without any leading zero.
· dac – This subscript must be referred to as “dac” followed by an integer from 0 to 2 which refers to one of the analog output channels. These subscript numbers are written without any leading zero.
For example, to produce the write transaction shown in the above Example Tag Write, an OPC client would write the value 121.411 to tag SPAN.cal10.con2

Format: The data type of the tag. All tag values are read from or written to the device in their printable ASCII representation.
The range of valid values varies from tag to tag. The abbreviations “int” and “float” in the table are generic and do not refer to any specific OPC data types.
If an invalid value is written, causing the device to return an error message, then an error message is posted by the server. The tag will retain the last valid value that was written.
The following is the table of tags and tag groups:
	Tag or group name
	Access
	Sub1
	Sub2
	Format

	ANHI
	R/W
	dac
	
	float

	ANLO
	R/W
	dac
	
	float

	BAND
	R/W
	
	
	float

	BAUD
	W
	
	
	int

	BENCH
	R/W
	
	
	bool

	BTEMP
	R
	
	
	float

	C1
	R/W
	con
	
	float

	C2
	R/W
	con
	
	float

	C3
	R/W
	con
	
	float

	C4
	R/W
	con
	
	float

	C5
	R/W
	con
	
	float

	C6
	R/W
	con
	
	float

	CAL
	R/W
	
	
	int

	CDRV
	R/W
	
	
	float

	CODE
	R/W
	
	
	string

	CTARG
	R/W
	
	
	float

	DAC
	W
	dac
	
	float

	DAMP
	R/W
	con
	
	int

	DIG
	R/W
	
	
	int

	DRY
	R/W
	
	
	bool

	DSPSEL
	R/W
	
	
	int

	DTYPE
	R/W
	
	
	int

	EECLR
	W
	
	
	bool

	F1
	R/W
	con
	
	float

	F2
	R/W
	con
	
	float

	HOLD
	R
	
	
	bool

	ID
	R/W
	
	
	string

	K1
	R/W
	con
	
	float

	K2
	R/W
	con
	
	float

	K3
	R/W
	con
	
	float

	K4
	R/W
	con
	
	float

	K5
	R/W
	con
	
	float

	K6
	R/W
	con
	
	float

	KEY
	W
	
	
	string

	LANG
	R/W
	
	
	int

	LOCKOP
	R/W
	
	
	bool

	LOG
	R/W
	con
	
	bool

	MAX
	R
	
	
	float

	MXCAL
	R/W
	
	
	int

	NAME
	R/W
	con
	
	string

	OITYPE
	R/W
	
	
	int

	PROD
	R/W
	cal
	
	string

	RAW
	R
	con
	
	float

	SCROLLTIM
	R/W
	
	
	int

	SERNO
	R/W
	
	
	string

	SPAN
	R/W
	cal
	con
	float

	TCM
	R
	
	
	bool

	TCMVER
	R
	
	
	string

	TDAMP
	R/W
	
	
	int

	TEMP
	R
	
	
	float

	TSPAN
	R/W
	
	
	float

	TZERO
	R/W
	
	
	float

	UNITS
	R/W
	con
	
	string

	VCC
	R
	
	
	float

	VER
	R
	
	
	string

	VN
	R
	
	
	float

	VP
	R
	
	
	float

	WTIM
	R
	
	
	int

	ZERO
	R/W
	cal
	con
	float

Writing to the tags shown in italics is not recommended. Writing to these tags will change the communication parameters, but unless the server’s comms parameters are updated to match, a loss of communication will result. The server’s comms parameters can be updated either by manually updating the Device Properties page, or by an OPC client updating the corresponding system tags.

If the ID tag is changed, the corresponding system tag is the server’s {Channel}.{Device}._System._DeviceId tag (substitute your project’s channel name and device name for {Channel} and {Device}, respectively). The ID tag is a string tag, whereas the _System._DeviceId tag is a numeric tag that holds the corresponding raw ASCII value. For example, if the ID tag holds the character ‘A’, then the _System._DeviceId tag should hold the number 65.

If the BAUD tag is changed, the corresponding system tag for a device connected directly to one of the PC’s serial ports is the server’s {Channel}.{Device}._System._BaudRate tag. If Ethernet encapsulation is used, no system tag is available for updating the baud rate; the serial baud rate of the terminal server (Ethernet-to-serial converter) must be changed.

Tag Blocks

The tag blocks are as follows:

· SIG1 and SIG4: These two tag blocks are read-only; they both have the same format. Each of these blocks contains 12 integers in the range 0-4095. There is also a string tag, called “string”, which contains all 12 integers concatenated together, 3 hexadecimal digits per integer. Altogether, the tags are:

SIG1.F1, SIG1.F1p, SIG1.F2, SIG1.F2p, ..., SIG1.F6, SIG1.F6p, SIG1.string
SIG4.F1, SIG4.F1p, SIG4.F2, SIG4.F2p, ..., SIG4.F6, SIG4.F6p, SIG4.string
The

· MOIST: This is a group of 3 read-only tag blocks, “con0” through “con2”, one block for each constituent.
Each of these blocks contains three tags:
· “con” (a float);
· “status” (a 16-bit unsigned integer); and

· “string” (a string).
The bits within “status” indicate various statuses. The “string” tag contains the values of both “con” and “status,” but with “status” in hexadecimal so that the values of individual bits may be more easily read.
The tags are:
MOIST.con0.con, MOIST.con0.status, MOIST.con0.string

MOIST.con1.con, MOIST.con1.status, MOIST.con1.string

MOIST.con2.con, MOIST.con2.status, MOIST.con2.string

The physical device has only one “status” value, which is sent to the host whenever MOIST is read for any of the constituents. Client software should examine the most recently read “status” tag to determine the fault status of the device.
How to use the Device Profile

Using the Device in a Project
To use this device profile, you can have each device in its own channel in a server project. Or if several devices are connected to the same RS-485 bus, they can be on the same channel.
Most tags are ordinary OPC tags. If the device returns an error to the server after any tag read or write, we post an error message.
Any attempt to read the numeric write-only tags returns a 0. Reading string write-only tags (KEY) returns the last value that was written.
To start the device’s EECLR operation, write a 1 to the EECLR tag. (The device profile will ignore any attempt to write a 0 to the tag.)
· The device operation can take over 2 seconds, during which time the device does not communicate. If the server is set to time out in less than the duration of the EECLR operation, the server will generate a false “Device is not responding” error.
· If the “Request timeout” in the Timing tab of the server’s Device Properties is at least 1000 ms, and “Fail after” (in the same tab) is at least 3 successive timeouts, then the error should not occur. If the error does occur, increasing these values should fix the problem.

7
7

