

www.kepware.com ©2021 PTC, Inc. All Rights Reserved.

Connectivity Guide
Configuring Universal Device Driver and
Profile Library (Modbus Protocol Example)

February, 2021
Ref. 1.001

www.kepware.com ©2021 PTC, Inc. All Rights Reserved.

Table of Contents
1. Introduction .. 1
2. Key Concepts ... 1
3. Procedure ... 2

3.1 Installation .. 2
3.2 Understanding the Profile ... 3
3.3 Create a Profile with KEPServerEX Configuration .. 3
3.4 Create a Profile with the Configuration API ... 4
3.5 Edit the Script ... 5
3.6 Update the Profile ... 15

3.6.1 Using Server Config .. 15
3.6.2 Using the Configuration API .. 15

3.7 Create a Channel to Use the Profile ... 16
3.8 Create a Modbus Ethernet Device ... 16
3.9 Create Tags ... 18

www.kepware.com 1 ©2021 PTC, Inc. All Rights Reserved.

1. Introduction
This document aims to assist users in the process of setting up communications between the Universal
Device Driver and a device that communicates over the Modbus TCP protocol. This is intended to help
provide an understanding of the concepts of the Universal Device driver using Modbus TCP as an
example and does not replace the Modbus features in KEPServerEX.

This guide assumes an understanding of how the Universal Device driver works and some experience
scripting and using JavaScript. For information about the driver, consult the help system (installed with
the driver) or available on Kepware.com. For help with JavaScript, there are many resources online, such
as “Re-introduction to JavaScript”, which focuses on the language and not the runtime environment
(NodeJs, Chrome/Browser, etc.).

After completing this guide, users should feel comfortable building profiles and communicating with
connected devices over custom protocols.

 See Also: Universal Device Driver User Manual, Profile Library User Manual

2. Key Concepts
A “profile” exists inside the Profile Library Plug-In and contains a script. Profiles define how the Universal
Device driver communicates with a device.

The profile script is a set of JavaScript functions that contain the necessary information to communicate
with a device using an arbitrary protocol. The current interface requires four functions to communicate
with an Ethernet solicited device: GetDriverInfo, ValidateAddress, BuildMessage, and ParseMessage. These
functions are described in further detail in the respective sections in this document. See Script Function:
GetDriverInfo, Script Function: ValidateAddress, Script Function: BuildMessage, and Script Function:
ParseMessage.

Linking is the process of associating a Universal Device channel with a profile to communicate with a
device. The image below provides an overview of how a Universal Device project could be structured and
what linking a profile to a channel means.

• The Profile Library can contain multiple profiles, each independent of each other.

• Each profile can be linked to multiple channels (1:many).

• Each channel can only be linked to one profile (1:1).

• Each channel maintains its own independent state. Runtime changes (such as creating variables) in
Channel1 do not affect Channel2, even if they share the same profile script.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript
https://www.kepware.com/getattachment/63935802-af9a-4732-800a-815ce460f488/universal-driver-manual.pdf
https://www.kepware.com/getattachment/4f6e5e49-dc78-4713-b2e4-444832c2e081/profile-library-manual.pdf

www.kepware.com 2 ©2021 PTC, Inc. All Rights Reserved.

3. Procedure

3.1 Installation
The first step is to install KEPServerEX with the Universal Device Driver and the Profile Library Plug-In.
Selecting the Universal Device option also installs the Profile Library Plug-In.

www.kepware.com 3 ©2021 PTC, Inc. All Rights Reserved.

3.2 Understanding the Profile

Before creating a channel and device and starting communications, a profile must be defined for the
channel to link. The profile defines how the channel communicates with devices through a few main
components:

Name: The user-facing name of the profile that appears in the Profile Library.

Profile ID: The next important piece of the profile is the Profile ID, formatted as an auto-generated GUID.
The Profile ID is a unique identifier that the channel uses to establish a link to an existing Profile in the
Profile Library. This allows for a project to have many channels linked to the same profile or to have
channels linked to different profiles. Once this link is formed, the driver then knows what script it needs to
use communicate with the device.

Script: The most important component of the profile is the JavaScript script property. This script is where
to define the protocol-specific communication instructions that the driver will use to communicate with a
Modbus device. Define the format and logic to build the frames to be sent and received between the
server and the target Modbus device.

Description: A description of the profile.

3.3 Create a Profile with KEPServerEX Configuration
1. Open the server Configuration.

2. Navigate to the Profile Library Plug-in in the left tree.

3. Right-click Profile Library and select Add/New Profile….

www.kepware.com 4 ©2021 PTC, Inc. All Rights Reserved.

4. Under the General property group, enter a Name and Description.

5. Locate the Profile property group.

6. Verify the Profile ID and default JavaScript profile script appear automatically.

7. Click OK. A profile has been created.

3.4 Create a Profile with the Configuration API
Let's set up an empty profile to start. These steps use Postman (http://getpostman.com). Creating a blank
profile fills in the default values of each of the components, which will be visible through a GET on the
profile.

1. To create a profile access Postman and create a new POST request to the URL:
<host>:57412/config/v1/project/_profile_library/profiles
with body:

{
 "common.ALLTYPES_NAME": "ModbusProfile"

}

 Tip: This guide uses ModbusProfile as the profile name.

2. Verify a new entry appears under the Profile Library Plug-In in the Configuration tree or when a GET is
executed on the profile by the API endpoint at:
<host>:57412/config/v1/project/_profile_library/profiles/ModbusProfile.

http://getpostman.com/

www.kepware.com 5 ©2021 PTC, Inc. All Rights Reserved.

3. Notice that the script is filled in with a partial template script with all the JavaScript function

definitions necessary to create a profile. The profile ID has been filled in with a new ID.

3.5 Edit the Script
1. Launch a text or code editor to create a new JavaScript file.

2. Review the script one function at a time. There are four functions that must be implemented in the
script to support solicited ethernet communications.

• GetDriverInfo: Retrieves driver metadata

• ValidateAddress: Verifies the address and data type created in the configuration or any dynamic
tags created in an OPC client are valid for the end device connected

• BuildMessage: Builds a frame of bytes to transmit to the device across the wire.

• ParseMessage: Interprets the response from the device and updates tag values or indicates is the
read or write operation was successful based on the data in the response.

3. Build out the script one function at a time, use the following information to edit the script.

The GetDriverInfo function is the first of these functions called by the driver. It retrieves driver
metadata, identifying the interface between the script and the driver by specifying the version of UDD
with which it was created.

 Note: The only supported version is 1.0. Any other value is rejected, leading to failure of all
subsequent functions. Any exception thrown out of any of the “framework” functions is caught
and results in failure of the current operation. An exception thrown out of:

• GetDriverInfo causes all subsequent operations to fail until corrected

• ValidateAddress causes the tag address to be treated as “invalid”

• BuildMessage causes the read or write operation on the current tag to fail

• ParseMessage causes the read or write operation on the current tag to fail

www.kepware.com 6 ©2021 PTC, Inc. All Rights Reserved.

Below is the entire GetDriverInfo function:

function GetDriverInfo() {
 return { version: “1.0” };
}

The ValidateAddress script function is to validate the address syntax of a tag and the data type,
which is central to communicating with a device. In the case of a Modbus device, this function
ensures that an address is a holding register in the supported range.

If desired, add logic to this function to modify various tag fields, such as providing a valid default
data type or modify an address format to enforce consistency among tag addresses.

For the ValidateAddress function in this Modbus example, review the sections:

// Validate the address is a holding register in the supported range
let tagAddress = info.tag.address;
try {
 let numericAddress = parseInt(tagAddress, 10);
 if ((numericAddress < 40001) || numericAddress > 49999 || isNaN(numericAddress)) {
 info.tag.valid = false;
 return info.tag;
 }

 info.tag.valid = true;
 return info.tag;
}
catch (e) {
 // Use log to provide helpful information that can assist with error resolution
 log("Unexpected error (ValidateAddress): " + e.message);
 info.tag.valid = false;
 return info.tag;
}

The code above offers a look at the JavaScript object info that the driver provides to the script
writer. This object is meant to hold data to be exchanged between the script and the driver. It checks
the address received from the driver (info.tag.address) and verifies it is in the expected range
for a Modbus holding register. If it’s not in that range, fail the tag being added by setting the valid
field of the tag to false: info.tag.valid = false.

// Provide a valid default data type based on register
// Note: "Default" is an invalid data type
let validDataTypes = {"3": "Word", "4": "Word"}
if (info.tag.dataType === "Default") {
 let registerChar = info.tag.address.charAt(0);
 info.tag.dataType = validDataTypes[registerChar];
}

www.kepware.com 7 ©2021 PTC, Inc. All Rights Reserved.

/*
 * The regular expression to compare address to.
 * ^4 starts with '4'
 * 0* find zero or more occurrences of '0'
 * 1$ ends with '1'
 */
let addressRegex = /^40*1$/;

// Correct a "semi-correct" tag address (e.g. 401 or 400001 --> 40001) with regex
if (addressRegex.test(info.tag.address)) {
 info.tag.address = "40001";
}

The above code provides examples of logic to modify various tag fields. The first code block resets
the data type if Default is initially selected. While Default is a KEPServerEx data type, it is an invalid
return value for a tag data type (i.e. info.tag.dataType). As such, provide an appropriate and valid data
type based on the register if the data type is set as Default.

The second code block uses a regex to recognize semi-correct addresses and modify them
accordingly. In the above implementation, this logic adjusts tag addresses with too few or too many
zeros; for example, ‘401’ or ‘400001` is changed to ‘40001’.

Below is the entire ValidateAddress function:

function ValidateAddress(info) {
// Provide a valid default data type based on register
// Note: "Default" is an invalid data type
let validDataTypes = {"3": "Word", "4": "Word"}
if (info.tag.dataType === "Default") {
 let registerChar = info.tag.address.charAt(0);
 info.tag.dataType = validDataTypes[registerChar];
}

/*
 * The regular expression to compare address to.
 * ^4 starts with '4'
 * 0* find zero or more occurrences of '0'
 * 1$ ends with '1'
 */
let addressRegex = /^40*1$/;

// Correct a "semi-correct" tag address (e.g. 401 or 400001 --> 40001) with regex
if (addressRegex.test(info.tag.address)) {
 info.tag.address = "40001";
}

// Validate the address is a holding register in the supported range

www.kepware.com 8 ©2021 PTC, Inc. All Rights Reserved.

let tagAddress = info.tag.address;
try {
let numericAddress = parseInt(tagAddress, 10);
if ((numericAddress < 40001) || numericAddress > 49999 || isNaN(numericAddress)) {
 info.tag.valid = false;
 return info.tag;
 }

 info.tag.valid = true;
 return info.tag;
}
catch (e) {
// Use log to provide helpful information that can assist with error resolution
 log("Unexpected error (ValidateAddress): " + e.message);
 info.tag.valid = false;
 return info.tag;
}
}

The BuildMessage script function builds a frame of bytes that is sent to the target Modbus device. In
the example implementation, the BuildMessage function makes use of two helper functions to build
action-specific frames: BuildReadMessage and BuildWriteMessage:

function BuildMessage(info) {
let buildStatus = "Failure";

if (info.type === "Read") {
 let readFrame = BuildReadMessage(info.tags);

 // Evaluate if the frame was successfully built
 if (readFrame.length === 12) {
 buildStatus = "Receive";
 }

 return { status: buildStatus, data: readFrame };

} else if (info.type === "Write") {
 SENTWRITEFRAME = BuildWriteMessage(info.tags);

 // Evaluate if the frame was successfully built
 if (SENTWRITEFRAME.length === 12) {
 buildStatus = "Receive";
 }

 return { status: buildStatus, data: SENTWRITEFRAME };
}

www.kepware.com 9 ©2021 PTC, Inc. All Rights Reserved.

}

Unlike the BuildMessage function, these helper functions are not required; they help make the script
more manageable. Let’s dive into these helper functions now.

Helper Function: BuildReadMessage

This function builds into a frame the function code for a Modbus read to ensure that the read is
on the appropriate address(es). Most of the Modbus-specific pieces of this snippet are
documented in code comments with the important parts called out.

 Note: While the Modbus protocol supports blocking / bulk read and write functionality, version
1.0 of the Universal Device Driver does not. Only one tag can be processed at a time. As such, the
tags parameter is expected to be an array containing a single tag element.

function BuildReadMessage (tags) {
// This should never happen, but it's best practice
if (tags.length === 0) {
 throw "No tags were requested for read request.";
}

// Sort the Modbus registers low to high
let registers = [];
for(let i=0; i<tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); }
registers.sort (sortNumber);

// Find the lowest register, and the number of registers required to read the whole block
let first = registers[0];
let count = registers[registers.length - 1] - first + 1;
// Get the zero-based register index to make the request
first -= 40001;

The code above checks the tags component of the JavaScript object info (i.e. info.tags). This
component holds an array of tags. Each tag has an address used to build a request frame for a
read. The beginning of this section of code ensures that the driver has given a tag to build a
request frame. If the length of the tags array is zero, it exits the function because there's no
reason for the driver to build a request frame if no tag – and in turn, no address – is provided.

// Update the transaction ID in the stateful transaction object

if (TXID === undefined) {
 TXID = 0;
} else {
 TXID++;
}

JavaScript is not a strongly typed language, making it possible to modify a variable's type or
composition at runtime. This is something to take advantage of within the BuildReadMessage
function. The above code snippet updates the value of a global variable TXID, which represents a
transaction ID exchanged between the script and the driver. Use this global variable to keep track
of the number of times that its building frames to transmit to the device. It's important to keep

www.kepware.com 10 ©2021 PTC, Inc. All Rights Reserved.

track of this because the transaction ID is a necessary part of the Modbus protocol, as seen in the
next step. TXID is stateful between transactions because it's shared between the script and driver
and means that it maintains state across transactions. Every time this function is called, the
transaction ID value maintains the state it was the last time it was changed at runtime.

// Build the Modbus Ethernet frame
let frame =
// ----Transaction ID------|-Protocol--|---Length--|Server|-Fxn-|
[hiByte(TXID), loByte(TXID), 0x00, 0x00, 0x00, 0x06, 0x00, 0x03,
------Starting Address-------|-------Register count--------|
hiByte(first), loByte(first), hiByte(count), loByte(count)]

The above shows the frame being constructed. It is an array of bytes to be sent to the Modbus
device. The code comments the different parts of the frame that are defined in the Modbus
protocol; for instance, the TXID described earlier is used in the protocol as the top two bytes.

 Note: Only bytes are currently supported for the frame array.

Below is the entire BuildReadMessage function:

function BuildReadMessage (tags) {
// This should never happen, but it's best practice
if (tags.length === 0) {
 throw "No tags were requested for read request.";
}

// Sort the Modbus registers low to high
let registers = [];
for(let i=0; i<tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); }
registers.sort (sortNumber);

// Find the lowest register, and the number of registers required to read the whole block
let first = registers[0];
let count = registers[registers.length - 1] - first + 1;
// Get the zero-based register index to make the request
first -= 40001;

// Initialize or update the transaction ID in the stateful transaction object
if (TXID === undefined) {
 TXID = 0;
} else {
 TXID++;
}

// Build the Modbus Ethernet frame
let frame =
// ----Transaction ID------|-Protocol--|---Length--|Server|-Fxn-|------
Starting Address----

www.kepware.com 11 ©2021 PTC, Inc. All Rights Reserved.

[hiByte(TXID), loByte(TXID), 0x00, 0x00, 0x00, 0x06, 0x00, 0x03, hiByte(first),

---|-------Register count--------|
loByte(first), hiByte(count), loByte(count)]

return frame;
}

Helper Function: BuildWriteMessage

The BuildWriteMessage function is similar to the BuildReadMessage function in that it assists with
building an array of bytes to send the device. However, this function facilitates writing a value to,
rather than reading a value from, a Modbus device.

 Note: Not all devices support writes. If the target device does support writes, the
BuildWriteMessage function – in conjunction with the ParseWriteMessage function – provides
an example of how to implement this functionality.

// This should never happen but it's best practice
if (tags.length === 0) {
 throw "No tags were requested for write request.";
}

// Sort the Modbus registers low to high
let register = parseInt(tags[0].address, 10);
register -= 40001;

// Get the value to write which is located in the first
// element in the tags[n].value object
let value = parseInt(tags[0].value);

The code above assigns the integer value of the tag address to the variable register. Additionally,
is assigns the value of the first tag value to the variable value since KEPServerEX only allows single
writes.

// Build the Modbus Ethernet frame
let frame =
 // ----Transaction ID-----|-Protocol--|---Length--|Server|-Fxn-|

 [
 hiByte(TXID), loByte(TXID), 0x00, 0x00, 0x00, 0x06, 0x00, 0x06,

--------Starting Address----------|-------value to write--------|
hiByte(register), loByte(register), hiByte(value), loByte(value)

];

return frame;

The above shows how to build up a write frame, which is very similar to building a read frame
within the BuildReadMessage function.

www.kepware.com 12 ©2021 PTC, Inc. All Rights Reserved.

The ParseMessage script function parses the array of bytes received from a Modbus device. In the
example implementation, as was the case with the BuildMessage function, the ParseMessage function
uses two helper functions to parse responses from a Modbus device: ParseReadMessage and
ParseWriteMessage:

function ParseMessage(info) {
let parseStatus = "Failure";

if (info.type === "Read") {
 let tags = ParseReadMessage(info.tags, info.data);

 // Evaluate if the data was successfully parsed from the packet
 if (tags[0].value != null) {
 parseStatus = "Success";
 }

 return { status: parseStatus, tags: tags };

} else if (info.type === "Write") {
 parseStatus = ParseWriteMessage(info.data);
 return { status: parseStatus, tags: info.tags };
}
}

Helper Function: ParseReadMessage

This function's purpose is to parse an incoming frame into a tag value to update the respective
tag in the server. The incoming frame is passed to the script via the JavaScript object information
as the returned byte array is contained in its data component (i.e. info.data). The function
determines what information is important based on the protocol specification and extracts the
value for the tag/address. This value is assigned to the value field of the tag (e.g.
info.tags[0].value) and then returned from the function, which is how the tag is updated in
the server.

 Note: As noted previously, version 1.0 of the Universal Device Driver does not support blocking
/ bulk reads or writes. Only a single tag can be processed at a time.

function ParseReadMessage(tags, data) {
// This should never happen but it's best practice
if (tags.length === 0) {
 throw "No tags were requested for read request.";
}

// Convert the string addresses to integers (e.g. 40001)
let registers = [];
for(let i=0; i<tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); }

www.kepware.com 13 ©2021 PTC, Inc. All Rights Reserved.

// Find the lowest numbered register - this is the starting address
let startingAddress = Array.min (registers);

// MBE Response values start here:
let offset = 9;
// Enough bytes?
if (data.length < offset + 2 * registers.length) {
 throw "Invalid response from device";
}

The code above performs error checking and getting some information about the transaction.

// Iterate the registers and lookup the response value for each
for (let i = 0; i < registers.length; ++i) {
 // Calculate the index of this register's value in the response buffer
 let index = registers[i] - startingAddress;
 // Extract it from the response buffer
 let hi = data[2*index + offset];
 let lo = data[2*index + offset + 1];
 tags[i].value = (wordFromBytes (hi, lo));
}

return tags;

The code above extracts the value returned from the device and assigns it to the appropriate tag
to be used to update the tag value in the server. The result is an updated tags component of the
JavaScript object info to be shared with the driver and ultimately used to update the tag values in
the server.

Below is the entire ParseReadMessage function.

function ParseReadMessage(tags, data) {
// This should never happen but it's best practice
if (tags.length === 0) {
 throw "No tags were requested for read request.";
}

// Convert the string addresses to integers (e.g. 40001)
let registers = [];
for(let i=0; i<tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); }

// Find the lowest numbered register - this is the starting address
let startingAddress = Array.min (registers);

// MBE Response values start here:
let offset = 9;
// Enough bytes?

www.kepware.com 14 ©2021 PTC, Inc. All Rights Reserved.

if (data.length < offset + 2 * registers.length) {
 throw "Invalid response from device";
}

// Iterate the registers and lookup the response value for each
for (let i = 0; i < registers.length; ++i) {
 // Calc the index of this register's value in the response buffer
 let index = registers[i] - startingAddress;
 // Extract it from the response buffer
 let hi = data[2*index + offset];
 let lo = data[2*index + offset + 1];
 tags[i].value = (wordFromBytes (hi, lo));
}

return tags;
}

Helper Function: ParseWriteMessage

The purpose of the ParseWriteMessage function is to determine if the write was successful. Most
devices respond that the request was received and executed. In the case of Modbus, the
response echoes the request, which makes it possible to compare the returned message with the
sent message that was saved in the global variable SENTWRITEFRAME.

Below is the entire ParseWriteMessage function:

function ParseWriteMessage(data) {
// Modbus echoes a write request so if the frame sent
// does not match the frame received, then the write fails
SENTWRITEFRAME.forEach((e1) => data.forEach((e2) => {
 if (e1 !== e2) {
 return "Failure";
 }
}));
return "Success";
}

www.kepware.com 15 ©2021 PTC, Inc. All Rights Reserved.

3.6 Update the Profile
Now that script implementation is complete, replace the template script in the profile with the finalized
script.

3.6.1 Using Server Config

1. Open the property editor for the new profile created in this exercise.

2. Load the profile in the Script field by copying the content of entire JavaScript file and paste it
into the Script field in the property editor OR clicking the ellipses (…) at the right of the Script
text box to launch a file browser to locate the JavaScript file and click OK.

 Note: The property editor only accepts multi-line text that uses Linux line endings (\n character)

and not Windows line endings (\r\n characters). If a pasted script appears with only the first line,
use your text editor to remove all line endings or convert them to Linux (\n character) line
endings.

3. Click OK.

3.6.2 Using the Configuration API

1. Create a PUT to the profile at URL

<host>:57412/config/v1/project/_profile_library/profiles

with body:
{
 “FORCE_UPDATE”: true,
 “libudcommon.LIBUDCOMMON_PROFILE_JAVASCRIPT”: <ESCAPED SCRIPT>
}

2. This script is put into the PUT body where <ESCAPED SCRIPT> is. Note is that this script needs to
be 'escaped' before being pasted in; JSON characters (e.g. many symbols, including, but not
limited to '\' '/') need to be marked with quotes so that they are interpreted as plain text and not
as json formatting characters.

 Tip: There are many tools online that can be used to complete such a task, such as
https://www.freeformatter.com/json-escape.html.

3. Execute the PUT request.

4. The profile is created and ready to start communicating with the device.

www.kepware.com 16 ©2021 PTC, Inc. All Rights Reserved.

3.7 Create a Channel to Use the Profile
The next step is to configure a channel using the Universal Device driver. This guide leaves most
settings at the defaults.

1. Create a new Universal Device channel (named Universal Device in this guide).

2. Click Next through to the Profile ID page of the channel creation wizard.

3. Ensure the new channel is linked to the new profile just created.

4. The Profile ID value is a randomly generated GUID and should be copied from the ID field of the
profile (in this example case 36d3ec6b-91a7-40a6-ab92-1e364e767092).

5. Leave all other values at the defaults, click Next, then Finish.

3.8 Create a Modbus Ethernet Device
The next step is to configure a device under the new channel. This guide leaves most settings at the
defaults, but updates the Destination IP or Hostname and the Port Number to connect to a Modbus
server device (the steps would work for any Modbus device).

1. Select the new channel in the tree.

2. Right-click and choose New Device….

3. Enter a name for the new device and click Next.

4. Accept or change the defaults, then click Next.

5. For the Destination IP or Hostname value, enter 127.0.0.1.

6. For the Port Number, enter 502.

www.kepware.com 17 ©2021 PTC, Inc. All Rights Reserved.

7. Click Next, then Finish.

8. Verify that the following messages in the Event Log:

Script Engine service starting.
Profile link established. | Channel = ‘Universal Device’, profile =
‘ModbusProfile’, state machine version = ‘1.0’.

 Tip: Creating additional channels does not show “Script Engine Starting” message again unless all
clients to Universal Device channels have been closed for at least five minutes. The “Profile link
established…” message appears each time a channel successfully links with a profile. The link only
attempts to establish after a device is created under a channel.

www.kepware.com 18 ©2021 PTC, Inc. All Rights Reserved.

3.9 Create Tags
Once a device is defined, data can be collected through tags. A tag can be anything in the ranges
expected by the profile script.

1. Select the new device in the tree.

2. Right-click and choose New Tag.

3. Enter a name and description for the new tag

4. Enter an Address of 40001 for this guide.

5. Select the Data Type Word from the drop-down and click OK.

3.10 Confirm Connectivity to Device
1. Launch OPC QuickClient from the configuration.

2. Verify the new tag for the universal device tag shows good quality data.

3. OPTIONAL: Update the update the Modbus device tag value via QuickClient and see that change
reflected in the Universal Device tag. Do a write and verify the value update to the new value.

	1. Introduction
	2. Key Concepts
	3. Procedure
	3.1 Installation
	3.2 Understanding the Profile
	3.3 Create a Profile with KEPServerEX Configuration
	3.4 Create a Profile with the Configuration API
	3.5 Edit the Script
	Helper Function: BuildReadMessage
	Helper Function: BuildWriteMessage
	Helper Function: ParseReadMessage
	Helper Function: ParseWriteMessage

	3.6 Update the Profile
	3.6.1 Using Server Config
	3.6.2 Using the Configuration API

	3.7 Create a Channel to Use the Profile
	3.8 Create a Modbus Ethernet Device
	3.9 Create Tags
	3.10 Confirm Connectivity to Device

